Steel Shield Technologies has redefined lubrication.

Metal Against Metal

The structure of all metals creates a surface characterized by a series of sharp peaks and valleys, some microscopic and some larger. As two metal surfaces contact each other and move in opposite directions, friction is caused, producing heat and metal deterioration. This friction-causing physical dynamic is heightened by the electromagnetically-field created on the surfaces of the contacting metals. The sharp peaks, known as asperities, and valleys, referred to as micro-pores and fissures, have opposite electro-magnetic charges. Illustration A shows a new metal with positive-charged asperities and negative-charged micro-pores and fissures. The constant interaction of these opposite-charged features wants to weaken the structure of the metal, causing eventual deterioration of the surface of the part.

Normal Lubricants Help

All lubricants help to slow this process to different degrees. Illustration B shows the results after a period of time of use of a typical oil lubricant. The constant friction and electro-magnetic interaction has caused the weakened metal to break off, creating microscopic metallic debris in the lubricant leading to abrasive wear from wear metal particles. This fact is evidenced in the need to change the engine oil of automobiles frequently as the lubricant “breaks down” due to the heat and metallic debris.

Steel Shield Technologies Help

Steel Shield Technologies has redefined lubrication by moving away from the standard approach to making the lubricant more effective through adjusting the refinement process as opposed to use of additives. Instead, Steel Shield Technologies approaches lubrication by improving the surface characteristics of the metal through the process of Advanced Boundary Film formation. This technological breakthrough is accomplished by addressing the naturally formed asperity, micro-pores and fissures and the electro-magnetic charges they create.

Steel Shield products consist of an advanced combination of halogen which react under thermal (heated) conditions to form electro-negative surface attaching compounds. They seek out and attach themselves to the lower surface areas, filling the micro-pores and fissures. At this point, the thermal conditions are effecting the asperities. Instead of breaking off because of a weakened metal state, the asperities gradually relax or flatten. So while the micro-pores and fissures are filling up, the asperities are flattening for an end result of a metal surface that is greatly improved. Creating a process that is total positive state of polarity. When the metal surface polarity becomes uniform in charge, there is a reduction in friction due to the Faraday reaction of like-charges. This electrochemical process continues at the molecular level by forming Advanced Boundary Film on the surface of the metal. Illustration C shows the end result of the production of the Advanced Boundary Film on the resulting uniform positive polarity.

Another aspect of this advanced technology is the organo-metallic substitution which is the chemical process designed to inhibit halide formation. Here, the halogens used to form the surface attaching compounds react with reagents having similar properties to the solution. The halogens, therefore, do not exchange the metal surface to find iron with which to react, forming halides and creating a chemically corrosive wear syndrome. Instead, an organo-metallic complex is formed as the basis of the Advanced Boundary Film.

Industrial Success Comes To The Consumer

Steel Shield Technologies is now bringing this breakthrough technology to the consumer after great success on the industrial level. The level of commitment to the Steel Shield product in the railroad industry is an indication of its performance in the most extreme conditions imaginable. This same technology is now available to you.

As has been explained, the Advanced Boundary Film Technology is a redefining approach to lubrication which provides outstanding benefits to the user.

Practical Elimination Of Metal-To-Metal Wear

Steel Shield Technologies addresses the three areas that cause the weakening and deterioration of the metal surfaces:

- The physical friction of rough surfaces
- The opposite electromagnetic charges that exist on the metal surface
- The chemical reactions that produce corrosive agents

Advanced Boundary Film Technology instead strengthens the metal and practically puts an end to metallic decoys in the lubricant.

Reduced Operating Temperatures

Friction is reduced so significantly that the operating temperature in treated mechanisms is notably reduced. The end result is a stronger metal that maintains its original specifications and performance level. An example of the reduction in operating temperature is found in the independent tests that show a drop of an average of 35 Fahrenheit degrees in treated automobile engines.

Increased Effectiveness Of The Lubricant

Wherever lubricant is used on the car steering, the Steel Shield Technologies additive, that lubricant is allowed to perform at its maximum efficiency. Lubricant flow will be enhanced with the elimination of rough metal surfaces; the reduction of heat and elimination of metallic decoys will protect the lubricant from “break down.”